Straight Line Question 75

Question: If the straight line through the point $ P(3,4) $ makes an angle $ \frac{\pi }{6} $ with the x-axis and meets the line $ 12x+5y+10=0 $ at Q, then the length $ PQ $ is

Options:

A) $ \frac{132}{12\sqrt{3}+5} $

B) $ \frac{132}{12\sqrt{3}-5} $

C) $ \frac{132}{5\sqrt{3}+12} $

D) $ \frac{132}{5\sqrt{3}-12} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • The equation of any line passing through the given point P(3, 4) and making an angle $ \frac{\pi }{6} $ with x-axis is $ \frac{x-3}{\cos 30^{o}}=\frac{y-4}{\sin 30^{o}}=r $ (say)……(i) Where ?r? represents the distance of any point Q on this line from the given point P (3, 4). The coordinates (x, y) of any point Q on line (i) are $ (3+r\cos 30^{o},4+r\sin 30^{o})i.e.,( 3+\frac{r\sqrt{3}}{2},4+\frac{r}{2} ) $ If the point lies on the line $ 12x+5y+10=0 $ , then $ 12( 3+\frac{r\sqrt{3}}{2} )+5( 4+\frac{r}{2} )+10=0\Rightarrow r=\frac{132}{12\sqrt{3}+5} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें