Straight Line Question 76

Question: The vertices of a triangle are (2, 1), (5, 2) and (4, 4). The lengths of the perpendicular from these vertices on the opposite sides are [IIT 1962]

Options:

A) $ \frac{7}{\sqrt{5}},\frac{7}{\sqrt{13}},\frac{7}{\sqrt{6}} $

B) $ \frac{7}{\sqrt{6}},\frac{7}{\sqrt{8}},\frac{7}{\sqrt{10}} $

C) $ \frac{7}{\sqrt{5}},\frac{7}{\sqrt{8}},\frac{7}{\sqrt{15}} $

D) $ \frac{7}{\sqrt{5}},\frac{7}{\sqrt{13}},\frac{7}{\sqrt{10}} $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ L _{12}\equiv x-3y+1=0 $ $ L _{23}\equiv 2x+y-12=0 $ $ L _{13}\equiv 3x-2y-4=0 $ Therefore, the required distances are $ D_3=| \frac{4-3\times 4+1}{\sqrt{10}} |=\frac{7}{\sqrt{10}} $ $ D_1=| \frac{4+1-12}{\sqrt{5}} |=\frac{7}{\sqrt{5}} $ $ D_2=| \frac{3\times 5-2\times 2-4}{\sqrt{9+4}} |=\frac{7}{\sqrt{13}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें