Straight Line Question 78

Question: A variable line passes through a fixed point P. The algebraic sum of the perpendicular drawn from (2,0), (0, 2) and (1, 1) on the line is zero, then the coordinates of the P are [IIT 1991; AMU 2005]

Options:

A)(1, -1)

B)(1, 1)

C)(2, 1)

D)(2, 2)

Show Answer

Answer:

Correct Answer: B

Solution:

  • Let $ P(x_1,y_1), $ then the equation of line passing through P and whose gradient is m, is $ y-y_1=m(x-x_1) $ Now according to the condition $ \frac{-2m+(mx_1-y_1)}{\sqrt{1+m^{2}}}+\frac{2+(mx_1-y_1)}{\sqrt{1+m^{2}}}+\frac{1-m+(mx_1-y_1)}{\sqrt{1+m^{2}}}=0 $
    Þ $ 3-3m+3mx_1-3y_1=0\Rightarrow y_1-1=m(x_1-1) $ Since it is a variable line, so hold for every value of m. Therefore $ y_1=1,x_1=1\Rightarrow P(1,1) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें