Straight Line Question 87

Question: The points on the x-axis whose perpendicular distance from the line $ \frac{x}{a}+\frac{y}{b}=1 $ is a, are[RPET 2001; MP PET 2003]

Options:

A) $ [ \frac{a}{b}(b\pm \sqrt{a^{2}+b^{2}}),0 ] $

B) $ [ \frac{b}{a}(b\pm \sqrt{a^{2}+b^{2}}),0 ] $

C) $ [ \frac{a}{b}(a\pm \sqrt{a^{2}+b^{2}}),0 ] $

D)None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • Let the point be $ (h,0) $ , then $ a=\pm \frac{bh+0-ab}{\sqrt{a^{2}+b^{2}}} $
    Þ $ bh=\pm a\sqrt{a^{2}+b^{2}}+ab\Rightarrow h=\frac{a}{b}(b\pm \sqrt{a^{2}+b^{2}}) $ Hence the point is $ { \frac{a}{b}(b\pm \sqrt{a^{2}+b^{2}}),0 } $ .