Straight Line Question 92

Question: If the length of the perpendicular drawn from the origin to the line whose intercepts on the axes are a and b be p, then [Karnataka CET 2003]

Options:

A) $ a^{2}+b^{2}=p^{2} $

B) $ a^{2}+b^{2}=\frac{1}{p^{2}} $

C) $ \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{2}{p^{2}} $

D) $ \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

*$ p=\frac{ab}{\sqrt{a^{2}+b^{2}}} $ or $ \frac{a^{2}+b^{2}}{a^{2}b^{2}}=\frac{1}{p^{2}}\Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}} $ .