Three Dimensional Geometry Question 10

Question: The perpendicular distance of P (1, 2, 3) form the lie $ \frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2} $ is

Options:

A) 7

B) 5

C) 0

D) 6

Show Answer

Answer:

Correct Answer: A

Solution:

[a] The point $ A(6,7,7) $ is on the line. Let the perpendicular from P meet the line in L. then $ AP^{2}={{(6-1)}^{2}}+{{(7-2)}^{2}}+{{(7-3)}^{2}}=66 $ Also AL=Projection of AP on line $ ( actual,d.c.’s\frac{3}{\sqrt{17}},\frac{2}{\sqrt{17}},\frac{-2}{\sqrt{17}} ) $
$ \Rightarrow (6-1).\frac{3}{\sqrt{17}}+(7-2.)\frac{2}{\sqrt{17}}+(7-3)\frac{-2}{\sqrt{17}}=\sqrt{17} $
$ \therefore ,\bot $ Distance d of P from the line is given by $ d^{2}=AP^{2}-AL^{2}=66-17=49 $ So that d=7



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें