Three Dimensional Geometry Question 102

Question: The planes $ x=cy+bz,y=az+cx,z=bx+ay $ pass through one line, if

Options:

A) $ a+b+c=0 $

B) $ a+b+c=1 $

C) $ a^{2}+b^{2}+c^{2}=1 $

D) $ a^{2}+b^{2}+c^{2}+2abc=1 $

Show Answer

Answer:

Correct Answer: D

Solution:

The planes are concurrent, therefore $ | ,\begin{matrix} -1 & c & b \\ c & -1 & a \\ b & a & -1 \\ \end{matrix}, |=0,\Rightarrow ,a^{2}+b^{2}+c^{2}+2abc=1 $ .