Three Dimensional Geometry Question 103

Question: If $ l_1,,m_1,,n_1 $ and $ l_2,m_2,n_2 $ are the direction cosines of two perpendicular lines, then the direction cosine of the line which is perpendicular to both the lines, will be

Options:

A) $ (m_1n_2-m_2n_1),(n_1l_2-n_2l_1),,(l_1m_2-l_2m_1) $

B) $ (l_1l_2-m_1m_2),,(m_1m_2-n_1n_2),,(n_1n_2-l_1l_2) $

C) $ \frac{1}{\sqrt{l_1^{2}+m_1^{2}+n_1^{2}}},\frac{1}{\sqrt{l_2^{2}+m_2^{2}+n_2^{2}}},\frac{1}{\sqrt{3}} $

D) $ \frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}} $

Show Answer

Answer:

Correct Answer: A

Solution:

Let lines are $ l_1x+m_1y+n_1z+d=0 $ ?..(i) and $ l_2x+m_2y+n_2z+d=0 $ …..(ii) If $ lx+my+nz+d=0 $ is perpendicular to (i) and (ii), then, $ ll_1+mm_1+nn_1=0,ll_2+mm_2+nn_2=0, $
$ \Rightarrow \text{ },\frac{l}{m_1n_2-m_2n_1}=\frac{m}{n_1l_2-l_1n_2}=\frac{n}{l_1m_2-l_2m_1}=d $ Therefore, direction cosines are $ (m_1n_2-m_2n_1),(n_1l_2-l_1n_2),,(l_1m_2-l_2m_1) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें