Three Dimensional Geometry Question 106
Question: The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as $ l_1,m_1,n_1;l_2,m_2,n_2 $ and $ l_3,m_3,n_3 $ are
Options:
A) $ l_1+l_2+l_3,m_1+m_2+m_3,n_1+n_2+n_3 $
B) $ \frac{l_1+l_2+l_3}{\sqrt{3}},\frac{m_1+m_2+m_3}{\sqrt{3}},\frac{n_1+n_2+n_3}{\sqrt{3}} $
C) $ \frac{l_1+l_2+l_3}{3},\frac{m_1+m_2+m_3}{3},\frac{n_1+n_2+n_3}{3} $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
Since the three lines are mutually perpendicular,                  
$ \therefore  $                 $ l_1l_2+m_1m_2+n_1n_2=0 $                                   $ l_2l_3+m_2m_3+n_2n_3=0 $                                   $ l_3l_1+m_3m_1+n_3n_1=0 $           Also, $ l_1^{2}+m_1^{2}+n_1^{2}=1,,l_2^{2}+m_2^{2}+n_2^{2}=1,l_3^{2}+m_3^{2}+n_3^{2}=1 $                     Now,  $ {{(l_1+l_2+l_3)}^{2}}+{{(m_1+m_2+m_3)}^{2}}+{{(n_1+n_2+n_3)}^{2}} $                     =  $ (l_1^{2}+m_1^{2}+n_1^{2})+(l_2^{2}+m_2^{2}+n_2^{2})+(l_3^{2}+m_3^{2}+n_3^{2}) $             + $ 2(l_1l_2+m_1m_2+n_1n_2)+2(l_2l_3+m_2m_3+n_2n_3) $                      $ +2(l_3l_1+m_3m_1+n_3n_1) $  = 3                 
Þ  $ {{(l_1+l_2+l_3)}^{2}}+{{(m_1+m_2+m_3)}^{2}}+{{(n_1+n_2+n_3)}^{2}}=3 $                     Hence, direction cosines of required line are :                      $ ( \frac{l_1+l_2+l_3}{\sqrt{3}},,\frac{m_1+m_2+m_3}{\sqrt{3}},\frac{n_1+n_2+n_3}{\sqrt{3}} ) $             Note: Students should remember it as a fact.
 BETA
  BETA 
             
             
           
           
           
          