Three Dimensional Geometry Question 106

Question: The direction cosines of a line equally inclined to three mutually perpendicular lines having direction cosines as $ l_1,m_1,n_1;l_2,m_2,n_2 $ and $ l_3,m_3,n_3 $ are

Options:

A) $ l_1+l_2+l_3,m_1+m_2+m_3,n_1+n_2+n_3 $

B) $ \frac{l_1+l_2+l_3}{\sqrt{3}},\frac{m_1+m_2+m_3}{\sqrt{3}},\frac{n_1+n_2+n_3}{\sqrt{3}} $

C) $ \frac{l_1+l_2+l_3}{3},\frac{m_1+m_2+m_3}{3},\frac{n_1+n_2+n_3}{3} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Since the three lines are mutually perpendicular,
$ \therefore $ $ l_1l_2+m_1m_2+n_1n_2=0 $ $ l_2l_3+m_2m_3+n_2n_3=0 $ $ l_3l_1+m_3m_1+n_3n_1=0 $ Also, $ l_1^{2}+m_1^{2}+n_1^{2}=1,,l_2^{2}+m_2^{2}+n_2^{2}=1,l_3^{2}+m_3^{2}+n_3^{2}=1 $ Now, $ {{(l_1+l_2+l_3)}^{2}}+{{(m_1+m_2+m_3)}^{2}}+{{(n_1+n_2+n_3)}^{2}} $ = $ (l_1^{2}+m_1^{2}+n_1^{2})+(l_2^{2}+m_2^{2}+n_2^{2})+(l_3^{2}+m_3^{2}+n_3^{2}) $ + $ 2(l_1l_2+m_1m_2+n_1n_2)+2(l_2l_3+m_2m_3+n_2n_3) $ $ +2(l_3l_1+m_3m_1+n_3n_1) $ = 3
Þ $ {{(l_1+l_2+l_3)}^{2}}+{{(m_1+m_2+m_3)}^{2}}+{{(n_1+n_2+n_3)}^{2}}=3 $ Hence, direction cosines of required line are : $ ( \frac{l_1+l_2+l_3}{\sqrt{3}},,\frac{m_1+m_2+m_3}{\sqrt{3}},\frac{n_1+n_2+n_3}{\sqrt{3}} ) $ Note: Students should remember it as a fact.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें