Three Dimensional Geometry Question 11

Question: Equation of the plane through the mid-point of the line segment joining the points P(4, 5, -10) and Q(-1, 2, 1) and perpendicular to PQ is

Options:

A) $ \vec{r}.( \frac{3}{2}\hat{i}+\frac{7}{2}\hat{j}-\frac{9}{2}\hat{k} )=45 $

B) $ \vec{r}.( -\hat{i}+2\hat{j}-\hat{k} )=\frac{135}{2} $

C) $ \vec{r}.(5\hat{i}+3\hat{j}-11\hat{k})+\frac{135}{2}=0 $

D) $ \vec{r}.(5\hat{i}+3\hat{j}-11\hat{k})=\frac{135}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Mid-point of PQ is $ =( \frac{3}{2},\frac{7}{2},\frac{-9}{2} ) $ DR of the normal is $ =(4-(-1),5-2,-10-1) $ $ =5,3,-11 $
$ \therefore $ Eqn. of plane is $ 5( x-\frac{3}{2} )+3( y-\frac{7}{2} )-11( z+\frac{9}{2} )=0 $
$ \Rightarrow 5x+3y-11z=\frac{135}{2} $
$ \Rightarrow r.,(5\hat{j}+3\hat{j}-11\hat{k})=\frac{135}{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें