Three Dimensional Geometry Question 114

Question: A square $ ABCD $ of diagonal 2a is folded along the diagonal $ AC $ so that the planes $ DAC $ and $ BAC $ are at right angle. The shortest distance between $ DC $ and $ AB $ is

[Kurukshetra CEE 1998]

Options:

A) $ \sqrt{2}a $

B) $ 2a/\sqrt{3} $

C) $ 2a/\sqrt{5} $

D) $(\sqrt{3}/2)a $

Show Answer

Answer:

Correct Answer: B

Solution:

When folded coordinates will be $ D,(0,0,a);C,(a,,0,,0); $ $ A(-a,0,0);B,(0,-a,0) $
Equation $ DC\text{ is, }\frac{x}{a}=\frac{y}{b}=\frac{z-a}{-a} $ Equation $ AB\text{is,}\frac{x+a}{a}=\frac{y}{-a}=\frac{z}{b} $ $ \therefore $ Shortest distance $ =\frac{2a}{\sqrt{3}}, $ , (By formula).



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें