Three Dimensional Geometry Question 123
Question: The equation of the plane passing through the lines $ \frac{x-4}{1}=\frac{y-3}{1}=\frac{z-2}{2} $ and $ \frac{x-3}{1}=\frac{y-2}{-4}=\frac{z}{5} $ is
Options:
A) $ 11x-y-3z=35 $
B) $ 11x+y-3z=35 $
C) $ 11x-y+3z=35 $
D) None of these
Show Answer
Answer:
Correct Answer: D
Solution:
$ a,(x-4)+b,(y-3)+c,(z-2)=0 $           
$ \therefore ,a+b+2c=0 $  and  $ a-4b+5c=0 $              $ \frac{a}{5+8}=\frac{b}{2-5}=\frac{c}{-4-1}=k $              $ \frac{a}{13}=\frac{b}{-3}=\frac{c}{-5}=k $             Therefore, the required equation of plane is                           $ -13x-3y-5z+33=0 $ .
 BETA
  BETA 
             
             
           
           
           
          