Three Dimensional Geometry Question 124

Question: The line which passes through the origin and intersect the two lines $ \frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{3},\frac{x-4}{2}=\frac{y+3}{3}=\frac{z-14}{4}, $ is

Options:

A) $ \frac{x}{1}=\frac{y}{-3}=\frac{z}{5} $

B) $ \frac{x}{-1}=\frac{y}{3}=\frac{z}{5} $

C) $ \frac{x}{1}=\frac{y}{3}=\frac{z}{-5} $

D) $ \frac{x}{1}=\frac{y}{4}=\frac{z}{-5} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let the line be $ \frac{x}{a}=\frac{y}{b}=\frac{z}{c} $ (i) If line (i) intersects with the line $ \frac{x-1}{2} $ $ =\frac{y+3}{4}=\frac{z-5}{3}, $ Then $ \begin{vmatrix} a & b & c \\ 2 & 4 & 3 \\ 4 & -3 & 14 \\ \end{vmatrix} =0\Rightarrow 9a-7b-10c=0 $ (ii) From (i) and (ii), we have $ \frac{a}{1}=\frac{b}{-3}=\frac{c}{5} $
$ \therefore $ The line is $ \frac{x}{1}=\frac{y}{-3}=\frac{z}{5} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें