Three Dimensional Geometry Question 127

Question: The d.r-s of normal to the plane through $ (1,,0,,0),(0,,1,,0) $ which makes an angle $ \frac{\pi }{4} $ with plane $ x+y=3 $ , are

[AIEEE 2002]

Options:

A) $ 1,\sqrt{2},1 $

B) 1,1, $ \sqrt{2} $

C) 1, 1, 2

D) $ \sqrt{2},,1,,1 $

Show Answer

Answer:

Correct Answer: B

Solution:

The plane by intercept form is $ \frac{x}{1}+\frac{y}{1}+\frac{z}{c}=1 $ .
D.r-s of normal are 1,1, $ \frac{1}{c} $ and of given plane are 1,1, 0. Now, $ \cos \frac{\pi }{4}=\frac{1.1+1.1+\frac{1}{c}.0}{( \sqrt{\frac{1}{c^{2}}+2} ),\sqrt{2}} $ Þ $ \frac{1}{\sqrt{2}}=\frac{2}{( \sqrt{\frac{1}{c^{2}}+2} )\sqrt{2}} $

Þ $ \frac{1}{c^{2}}+2=4\Rightarrow c^{2}=\frac{1}{2} $ Þ $ c=\frac{1}{\sqrt{2}} $
\ D.r-s of required normal are 1, 1, $ \sqrt{2} $ .