Three Dimensional Geometry Question 127

Question: The d.r-s of normal to the plane through $ (1,,0,,0),(0,,1,,0) $ which makes an angle $ \frac{\pi }{4} $ with plane $ x+y=3 $ , are

[AIEEE 2002]

Options:

A) $ 1,\sqrt{2},1 $

B) 1,1, $ \sqrt{2} $

C) 1, 1, 2

D) $ \sqrt{2},,1,,1 $

Show Answer

Answer:

Correct Answer: B

Solution:

The plane by intercept form is $ \frac{x}{1}+\frac{y}{1}+\frac{z}{c}=1 $ .
D.r-s of normal are 1,1, $ \frac{1}{c} $ and of given plane are 1,1, 0. Now, $ \cos \frac{\pi }{4}=\frac{1.1+1.1+\frac{1}{c}.0}{( \sqrt{\frac{1}{c^{2}}+2} ),\sqrt{2}} $ Þ $ \frac{1}{\sqrt{2}}=\frac{2}{( \sqrt{\frac{1}{c^{2}}+2} )\sqrt{2}} $

Þ $ \frac{1}{c^{2}}+2=4\Rightarrow c^{2}=\frac{1}{2} $ Þ $ c=\frac{1}{\sqrt{2}} $
\ D.r-s of required normal are 1, 1, $ \sqrt{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें