Three Dimensional Geometry Question 135

Question: Let L be the line of intersection of the planes $ 2x+3y+z=1 $ and $ x+3y+2z=2 $ . If L makes an angle $ \alpha $ with the positive x-axis, then $ cos\alpha $ equals

Options:

A) 1

B) $ \frac{1}{\sqrt{2}} $

C) $ \frac{1}{\sqrt{3}} $

D) $ \frac{1}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let the direction cosines of line L be l, m, n, then $ 2l+3m+n=0 $ (i) And $ l+3m+2n=0 $ (ii) On solving equations (i) and (ii), we get $ \frac{l}{6-3}=\frac{m}{1-4}=\frac{n}{6-3}\Rightarrow \frac{l}{3}=\frac{m}{-3}=\frac{n}{3} $ Now $ \frac{l}{3}=\frac{m}{-3}=\frac{n}{3}=\frac{\sqrt{l^{2}+m^{2}+n^{2}}}{\sqrt{3^{2}+{{(-3)}^{2}}+3^{2}}} $
$ \therefore l^{2}+m^{2}+n^{2}=1\therefore \frac{l}{3}=\frac{m}{-3}=\frac{n}{3}=\frac{1}{\sqrt{27}} $
$ \Rightarrow l=\frac{3}{\sqrt{27}}=\frac{1}{\sqrt{3}},m=-\frac{1}{\sqrt{3}},n=\frac{1}{\sqrt{3}} $ Line L, makes an angle $ \alpha $ with $ +vex-axis $
$ \therefore l=\cos \alpha \Rightarrow \cos \alpha =\frac{1}{\sqrt{3}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें