Three Dimensional Geometry Question 151

Question: If a line makes angles $ \alpha ,\beta ,\gamma ,\delta $ with four diagonals of a cube, then the value of $ {{\sin }^{2}}\alpha +{{\sin }^{2}}\beta + $ $ {{\sin }^{2}}\gamma +{{\sin }^{2}}\delta $ is

[MP PET 2004]

Options:

A) $ \frac{4}{3} $

B) 1

C) $ \frac{8}{3} $

D) $ \frac{7}{3} $

Show Answer

Answer:

Correct Answer: C

Solution:

Let side of the cube = a Then OG, BE and AD, CF will be four diagonals. d.r.?s of OG = a, a, a = 1, 1, 1 d.r.?s of BE = ?a, ?a, a = 1, 1, ?1 d.r.?s of AD = ?a, a, a = ?1, 1, 1 d.r.?s of CF = a, ?a, a = 1, ?1, 1 Let d.r.?s of line be l, m, n. Therefore angle between line and diagonal $ \cos \alpha =\frac{l+m+n}{\sqrt{3}},,\cos \beta =\frac{l+m-n}{\sqrt{3}},, $ $ \cos \gamma =\frac{-l+m+n}{\sqrt{3}},,\cos \delta =\frac{l-m+n}{\sqrt{3}} $
Þ $ {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +{{\cos }^{2}}\gamma +{{\cos }^{2}}\delta $ $ =\frac{1}{3}[{{(l+m+n)}^{2}}+{{(l+m-n)}^{2}}+{{(-l+m+n)}^{2}}+{{(l-m+n)}^{2}}] $ $ =\frac{4}{3} $ Þ $ {{\sin }^{2}}\alpha +{{\sin }^{2}}\beta +{{\sin }^{2}}\gamma +{{\sin }^{2}}\delta =\frac{8}{3} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें