Three Dimensional Geometry Question 169
Question: Line $ \vec{r}=\vec{a}+\lambda \vec{b} $ will not meet the plane $ \vec{r}\cdot \vec{n}=q $ , if
Options:
A) $ \vec{b}\cdot \vec{n}=0,\vec{a}\cdot \vec{n}=q $
B) $ \vec{b}\cdot \vec{n}\ne 0,\vec{a}\cdot \vec{n}\ne q $
C) $ \vec{b}\cdot \vec{n}=0,\vec{a}\cdot \vec{n}\ne q $
D) $ \vec{b}\cdot \vec{n}\ne 0,\vec{a}\cdot \vec{n}=q $
Show Answer
Answer:
Correct Answer: C
Solution:
[c] We must have $ \vec{b}\cdot \vec{n}=0 $ (because the line and the plane must be parallel) and $ \vec{b}\cdot \vec{n}\ne q $ (as point $ \vec{a} $ on the line should not lie on the plane).