Three Dimensional Geometry Question 170

Question: The line $ \frac{x+3}{3}=\frac{y-2}{-2}=\frac{z+1}{1} $ and the plane $ 4x+5y+3z-5=0 $ intersect at a point

Options:

A) (3, 1, ?2)

B) (3, ? 2, 1)

C) (2, ?1, 3)

D) (?1, ?2, ?3)

Show Answer

Answer:

Correct Answer: B

Solution:

Line is $ \frac{x+3}{3}=\frac{y-2}{-2}=\frac{z+1}{1}=\lambda , $ (Let) $ x=3\lambda -3;y=-2\lambda +2;z=\lambda -1 $ line intersects plane, therefore, $ 4(3\lambda -3)+5(-2\lambda +2)+3(\lambda -1)-5=0 $ $ \Rightarrow \lambda =2 $ . So, $ x=3;y=-2;z=1 $ . Trick : Since the point (3, ? 2, 1) satisfies both the equations.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें