Three Dimensional Geometry Question 172

Question: The equation of plane through the line of intersection of planes $ ax+by+cz+d=0 $ , $ a’x+b’y+c’z+d’=0 $ and parallel to the line $ y=0,z=0 $ is

[Kurukshetra CEE 1998]

Options:

A) $ (ab’-a’b)x+(bc’-b’c)y+(ad’-a’d)=0 $

B) $ (ab’-a’b)x+(bc’-b’c)y+(ad’-a’d)z=0 $

C) $ (ab’-a’b)y+(ac’-a’c)z+(ad’-a’d)=0 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

The equation of a plane through the line of intersection of the planes $ ax+by+cz+d=0 $ and $ {a}‘x+{b}‘y+{c}‘z+{d}’=0 $ is $ (ax+by+cz+d)+\lambda ({a}‘x+{b}‘y+{c}‘z+{d}’)=0 $ or $ x,(a+\lambda {a}’)+y,(b+\lambda {b}’)+z,(c+\lambda {c}’)+d+\lambda {d}’=0 $ ?.(i) This is parallel to x-axis i.e., $ y=0,z=0 $
$ \therefore 1,(a+\lambda {a}’)+0,(b+\lambda {b}’)+0,(c+\lambda {c}’)=0,\Rightarrow ,\lambda =-\frac{a}{{{a}’}} $ Putting the value of l in (i), the required plane is $ y,({a}‘b-a{b}’)+z,({a}‘c-a{c}’)+{a}’d-a{d}’=0 $ i.e., $ ,(a{b^{’}}-{a^{’}}b)y+,(a{c}’-{a}‘c)z+a{d}’-{a}’d=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें