Three Dimensional Geometry Question 179

Question: The equation of the plane which makes with co-ordinate axes, a triangle with its centroid $ (\alpha ,\beta ,\gamma ) $ is

Options:

A) $ \alpha x,\beta y,\gamma z=3 $

B) $ \alpha x,\beta y,\gamma z=1 $

C) $ \frac{x}{\alpha }+\frac{y}{\beta }+\frac{z}{\gamma }=3 $

D) $ \frac{x}{\alpha }+\frac{y}{\beta }+\frac{z}{\gamma }=1 $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let us take a triangle ABC and their vertices A (a, 0, 0), B(0, b, 0) and C(0, 0, c) Therefore the equation of plane is $ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 $ (i) Now, given centroid of $ \Delta ABC $ is $ (\alpha ,\beta ,\gamma ) $ As we know, centroid of $ \Delta ABC $ with vertices $ (x_1,y_1,z_1),(x_2,y_2,z_2) $ and $ (x_3,y_3,z_3) $ is given by $ ( \frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3},\frac{z_1+z_2+z_3}{3}, ) $

$ \therefore $ By using this formula, we have $ \frac{a+0+0}{3}=\alpha \Rightarrow a=3\alpha ,;\frac{0+b+b}{3}=\beta $

$ \Rightarrow b=3\beta $ And $ \frac{0+0+c}{3}=\gamma \Rightarrow c=3\gamma $ Now, put the values of a, b, c, in equation (i), which gives $ \frac{x}{3\alpha }+\frac{y}{3\beta }+\frac{z}{3\gamma }=1 $
$ \therefore $ $ \frac{x}{\alpha }+\frac{y}{\beta }+\frac{z}{\gamma }=3 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें