Three Dimensional Geometry Question 187

Question: The equation of the plane containing the line $ \frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1} $ and the point (0, 7, ?7) is

[Roorkee 1999]

Options:

A) $ x+y+z=1 $

B) $ x+y+z=2 $

C) $ x+y+z=0 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

The equation of plane containing the line $ \frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1} $ is $ a(x+1)+b(y-3)+c(z+2)=0 $ …..(i) where $ -3a+2b+c=0 $ …..(ii) This passes through (0, 7, ?7)
$ \therefore $ $ a+4b-5c=0 $ ..?(iii) From (ii) and (iii), $ \frac{a}{-14}=\frac{b}{-14}=\frac{c}{-14} $ or $ \frac{a}{1}=\frac{b}{1}=\frac{c}{1} $ Thus, the required plane is $ x+y+z=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें