Three Dimensional Geometry Question 19

Question: The reflection of the point $ \vec{a} $ in the plane $ \vec{r} $ . $ \vec{n} $ =q is

Options:

A) $ \vec{a}+\frac{(\vec{q}-\vec{a},\cdot \vec{n})}{| {\vec{n}} |} $

B) $ \vec{a}+2( \frac{(\vec{q}-\vec{a},\cdot \vec{n})}{{{| {\vec{n}} |}^{2}}} )\vec{n} $

C) $ \vec{a}+\frac{2(\vec{q}-\vec{a},\cdot \vec{n})}{| {\vec{n}} |}\vec{n} $

D) none of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Given plane is $ \vec{r}\cdot \vec{n}=q $ …(i) Let the image of A $ (\vec{a}) $ in the plane be B $ (\vec{b}) $ . Equation of AC is $ \vec{r}=\vec{a}+\lambda \vec{n} $ ( $ \therefore $ AC is normal to the plane) …(ii) Solving (i) and (ii). We get $ (\vec{a}+\lambda \vec{n})\cdot \vec{n}=q $ Or $ \lambda =\frac{q-\vec{a}\cdot \vec{n}}{\overrightarrow{| {} |}} $
$ \therefore \overrightarrow{OC}=\vec{a}+\frac{(q-\vec{a},\cdot \vec{n})}{\overrightarrow{{{| n |}^{2}}}}\cdot \vec{n} $ But $ \overrightarrow{OC}=\frac{\vec{a}+\vec{b}}{2} $
$ \therefore \vec{a}+\frac{(q-\vec{a},\cdot \vec{n})\vec{n}}{\overrightarrow{{{| n |}^{2}}}}=\frac{\vec{a}+\vec{b}}{2} $ or $ \vec{b}=\vec{a}+2( \frac{q-\vec{a}\cdot \vec{n}}{\overrightarrow{{{| n |}^{2}}}} )\vec{n} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें