Three Dimensional Geometry Question 19
Question: The reflection of the point $ \vec{a} $ in the plane $ \vec{r} $ . $ \vec{n} $ =q is
Options:
A) $ \vec{a}+\frac{(\vec{q}-\vec{a},\cdot \vec{n})}{| {\vec{n}} |} $
B) $ \vec{a}+2( \frac{(\vec{q}-\vec{a},\cdot \vec{n})}{{{| {\vec{n}} |}^{2}}} )\vec{n} $
C) $ \vec{a}+\frac{2(\vec{q}-\vec{a},\cdot \vec{n})}{| {\vec{n}} |}\vec{n} $
D) none of these
Show Answer
Answer:
Correct Answer: B
Solution:
[b] Given plane is  $ \vec{r}\cdot \vec{n}=q $                     …(i) Let the image of A  $ (\vec{a}) $  in the plane be B  $ (\vec{b}) $ . Equation of AC is  $ \vec{r}=\vec{a}+\lambda \vec{n} $  (
$ \therefore  $ AC is normal to the plane)                …(ii) Solving (i) and (ii). We get  $ (\vec{a}+\lambda \vec{n})\cdot \vec{n}=q $  Or  $ \lambda =\frac{q-\vec{a}\cdot \vec{n}}{\overrightarrow{| {} |}} $
$ \therefore \overrightarrow{OC}=\vec{a}+\frac{(q-\vec{a},\cdot \vec{n})}{\overrightarrow{{{| n |}^{2}}}}\cdot \vec{n} $  But  $ \overrightarrow{OC}=\frac{\vec{a}+\vec{b}}{2} $
$ \therefore \vec{a}+\frac{(q-\vec{a},\cdot \vec{n})\vec{n}}{\overrightarrow{{{| n |}^{2}}}}=\frac{\vec{a}+\vec{b}}{2} $  or  $ \vec{b}=\vec{a}+2( \frac{q-\vec{a}\cdot \vec{n}}{\overrightarrow{{{| n |}^{2}}}} )\vec{n} $
 BETA
  BETA 
             
             
           
           
           
          