Three Dimensional Geometry Question 202

Question: The equation of the plane through the point $ (2,-1,-3) $ and parallel to the lines $ \frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4} $ and $ \frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2} $ is

[Kerala (Engg.) 2005]

Options:

A) $ 8x+14y+13z+37=0 $

B) $ 8x-14y+13z+37=0 $

C) $ 8x+14y-13z+37=0 $

D) $ 8x+14y+13z-37=0 $

E) (e) $ 8x-14y-13z-37=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Equation of plane passing through the point (2, ?1, ?3) is, Also, $ A(x-2)+B(y+1)+C(z+3)=0 $ Also, $ 3A+2B-4C=0 $ and $ 2A-3B+2C=0 $ \ $ \frac{A}{-8}=\frac{B}{-14}=\frac{C}{-13}=k $ , (Let) So, $ A=-8k,B=-14k,C=-13k $ Equation of required plane is, $ -k[8(x-2)+14(y+1)+13(z+3)]=0 $ i.e., $ 8x+14y+13z+37=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें