Three Dimensional Geometry Question 217

Question: The symmetric equation of lines $ 3x+2y+z-5=0 $ and $ x+y-2z-3=0 $ , is

Options:

A) $ \frac{x-1}{5}=\frac{y-4}{7}=\frac{z-0}{1} $

B) $ \frac{x+1}{5}=\frac{y+4}{7}=\frac{z-0}{1} $

C) $ \frac{x+1}{-5}=\frac{y-4}{7}=\frac{z-0}{1} $

D) $ \frac{x-1}{-5}=\frac{y-4}{7}=\frac{z-0}{1} $

Show Answer

Answer:

Correct Answer: C

Solution:

Let a, b, c be the d.r.’s of required line
$ \therefore $ $ 3a+2b+c=0 $ and $ a+b-2c=0 $ $ \frac{a}{-4-1}=\frac{b}{1+6}=\frac{c}{3-2} $ or $ \frac{a}{-5}=\frac{b}{7}=\frac{c}{1} $ In order to find a point on the required line we put $ z=0 $ in the two given equation to obtain, $ 3x+2y=5 $ and $ x+y=3 $ . Solving these two equations, we obtain $ x=-1,,y=4 $ .
$ \therefore $ Co-ordinates of point on required line are $ (-1,,4,,0) $ . Hence required line is $ \frac{x+1}{-5}=\frac{y-4}{7}=\frac{z-0}{1} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें