Three Dimensional Geometry Question 218

Question: The angle between the lines whose direction cosines satisfy the equations $ l+m+n=0 $ , $ l^{2}+m^{2}-n^{2}=0 $ is given by

[MP PET 1993; RPET 2001]

Options:

A) $ \frac{2\pi }{3} $

B) $ \frac{\pi }{6} $

C) $ \frac{5\pi }{6} $

D) $ \frac{\pi }{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ l+m+n=0,l^{2}+m^{2}-n^{2}=0 $ and $ l^{2}+m^{2}+n^{2}=1 $ Solving above equations, we get $ m=\pm \frac{1}{\sqrt{2}},n=\pm \frac{1}{\sqrt{2}} $ and $ l=0 $ .
$ \therefore ,\theta =\frac{\pi }{3} $ or $ \frac{\pi }{2} $ .