Three Dimensional Geometry Question 220

Question: The equation of straight line passing through the point (a, b, c) and parallel to z- axis, is

[MP PET 1995; Pb. CET 2000]

Options:

A) $ \frac{x-a}{1}=\frac{y-b}{1}=\frac{z-c}{0} $

B) $ \frac{x-a}{0}=\frac{y-b}{1}=\frac{z-c}{1} $

C) $ \frac{x-a}{1}=\frac{y-b}{0}=\frac{z-c}{0} $

D) $ \frac{x-a}{0}=\frac{y-b}{0}=\frac{z-c}{1} $

Show Answer

Answer:

Correct Answer: D

Solution:

The line through $ (a,b,c) $ is $ \frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n} $ ?..(i) Since the line is parallel to z-axis, therefore any point on this line will be of the form $ (a,b,z_1). $ Also any point on line (i) is $ (lr+a,mr+b,nr+c). $ Hence $ \begin{matrix} lr+a=a \\ mr+b=b \\ \end{matrix}\Rightarrow l=m=0 $ Hence the line will be $ \frac{x-a}{0}=\frac{y-b}{0}=\frac{z-c}{1} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें