Three Dimensional Geometry Question 226

Question: The straight lines whose direction cosines are given by $ al+bm+cn=0,fmn+gnl+hlm=0 $ are perpendicular, if

Options:

A) $ \frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0 $

B) $ \sqrt{\frac{a}{f}}+\sqrt{\frac{b}{g}}+\sqrt{\frac{c}{h}}=0 $

C) $ \sqrt{af}=\sqrt{bg}=\sqrt{ch} $

D) $ \sqrt{\frac{a}{f}}=\sqrt{\frac{b}{g}}=\sqrt{\frac{c}{h}} $

Show Answer

Answer:

Correct Answer: A

Solution:

From the first relation, $ n=-( \frac{al+bm}{c} ) $ Put the value of n in second relation,
$ fm,( -\frac{(al+bm)}{c} )+gl,( -\frac{(al+bm)}{c} )+hlm=0 $
or $ afml+bfm^{2}+agl^{2}+bglm-chlm=0 $
$ ag\frac{l^{2}}{m^{2}}+\frac{l}{m}(af+bg-ch)+bf=0 $ …..(i)
Now if $ l_1,m_1,n_1 $ and $ l_2,m_2,n_2 $ be direction cosines of two lines, then from (i) $ \frac{l_1l_2}{m_1m_2}=\frac{bf}{ag} $ , $ [ \text{Since roots of (i) are }\frac{l_1}{m_1},\frac{l_2}{m_2} ] $ or $ \frac{l_1l_2}{f/a}=\frac{m_1m_2}{g/b} $
Similarly, elimination of l will yield $ \frac{m_1m_2}{g/b}=\frac{n_1n_2}{h/c} $

$ \therefore ,\frac{l_1l_2}{f/a}=\frac{m_1m_2}{g/b}=\frac{n_1n_2}{h/c}=q $
(Say) We know that the lines are perpendicular, if $ l_1l_2+m_1m_2+n_1n_2=0 $
i.e., $ ( \frac{f}{a} ),q+( \frac{g}{b} ),q+( \frac{h}{c} ),q=0 $ or $ \frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0 $ .
Note: Student should remember this question as a fact.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें