Three Dimensional Geometry Question 236

Question: The acute angle between the line joining the points (2,1,?3), (?3,1,7) and a line parallel to $ \frac{x-1}{3}= $ $ \frac{y}{4}=\frac{z+3}{5} $ through the point (?1, 0, 4) is

[MP PET 1998]

Options:

A) $ {{\cos }^{-1}}( \frac{7}{5\sqrt{10}} ) $

B) $ {{\cos }^{-1}}( \frac{1}{\sqrt{10}} ) $

C) $ {{\cos }^{-1}}( \frac{3}{5\sqrt{10}} ) $

D) $ {{\cos }^{-1}}( \frac{1}{5\sqrt{10}} ) $

Show Answer

Answer:

Correct Answer: A

Solution:

Direction ratio of the line joining the point $ (2,1,-3),, $ $ ,(-,3,1,7) $ are $ (a_1,b_1,c_1), $ $ ,\Rightarrow (-,3-2,1-1,7-(-3))\Rightarrow (-,5,0,10) $ Direction ratio of the line parallel to line $ \frac{x-1}{3}=\frac{y}{4}=\frac{z+3}{5} $ are $ (a_2,,b_2,c_2)\Rightarrow (3,4,5) $ Angle between two lines, $ \cos \theta =\frac{a_1a_2+b_1b_2+c_1c_2}{\sqrt{a_1^{2}+b_1^{2}+c_1^{2}}\sqrt{a_2^{2}+b_2^{2}+c_2^{2}}} $ $ \cos \theta =\frac{(-,5\times 3)+(0\times 4)+(10\times 5)}{\sqrt{25+0+100}\sqrt{9+16+25}} $ $ \cos \theta =\frac{35}{25\sqrt{10}}\Rightarrow \theta ={{\cos }^{-1}}( \frac{7}{5\sqrt{10}} ) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें