Three Dimensional Geometry Question 239

Question: A line with direction cosines proportional to 2,1, 2 meets each of the lines $ x=y+a=z $ and $ x+a=2y=2z $ . The co-ordinates of each of the points of intersection are given by

[AIEEE 2004]

Options:

A) $ (2a,a,,3a),(2a,,a,,a) $

B) $ (3a,,2a,,3a),\ (a,,a,,a) $

C) $ (3a,,2a,,3a),(a,,a,,2a) $

D) $ (3a,,3a,,3a),(a,,a,,a) $

Show Answer

Answer:

Correct Answer: B

Solution:

Let the two lines be AB and CD having equation $ \frac{x}{1}=\frac{y+a}{1}=\frac{z}{1}=\lambda $ and $ \frac{x+a}{2}=\frac{y}{1}=\frac{z}{1}=\mu $ then $ P\equiv (\lambda ,,\lambda -a,\lambda ) $ and $ Q=(2\mu -a,,\mu ,,\mu ) $ So according to question, $ \frac{\lambda -2\mu +a}{2}=\frac{\lambda -a-\mu }{1} $ $ =\frac{\lambda -\mu }{2} $

Þ $ \mu =a $ and $ \lambda =3a $
$ \therefore $ $ P\equiv (3a,,2a,,3a) $ and $ [{{(x-2)}^{2}}+{{(y-3)}^{2}}+{{(z-4)}^{2}}] $ . Trick: Put the options and check it.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें