Three Dimensional Geometry Question 246

Question: The shortest distance from the plane $ 12x+4y+3z=327 $ to the sphere $ x^{2}+y^{2}+z^{2}+ $ $ 4x-2y-6z=155 $ is

[AIEEE 2003]

Options:

A) 26

B) $ 11\frac{4}{13} $

C) 13

D) 39

Show Answer

Answer:

Correct Answer: C

Solution:

$ \because $ Shortest distance = Perpendicular distance ? r Now, perpendicular distance
$ =,| \frac{-2\times 12+4\times 1+3\times 3-327}{\sqrt{144+9+16}} |,=,26 $
\ Shortest distance $ =26-\sqrt{4+1+9+155} $ , $ [\because 26-r] $
$ =26-13=13 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें