Three Dimensional Geometry Question 248

Question: Two systems of rectangular axes have the same origin. If a plane cuts them at distance a, b, c and a’, b’, c’ from the origin, then

[AIEEE 2003]

Options:

A) $ \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a{{’}^{2}}}+\frac{1}{b{{’}^{2}}}+\frac{1}{c{{’}^{2}}}=0 $

B) $ \frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a{{’}^{2}}}+\frac{1}{b{{’}^{2}}}-\frac{1}{c{{’}^{2}}}=0 $

C) $ \frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a{{’}^{2}}}-\frac{1}{b{{’}^{2}}}-\frac{1}{c{{’}^{2}}}=0 $

D) $ \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a{{’}^{2}}}-\frac{1}{b{{’}^{2}}}-\frac{1}{c{{’}^{2}}}=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

Equation of planes be $ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 $ and $ \frac{x}{{{a}’}}+\frac{y}{{{b}’}}+\frac{z}{{{c}’}}=1 $ (Perpendicular distance on plane from origin is same)
\ $ | \frac{-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}} |=| \frac{-1}{\sqrt{\frac{1}{{{{{a}’}}^{2}}}+\frac{1}{{{{{b}’}}^{2}}}+\frac{1}{{{{{c}’}}^{2}}}}} | $
\ $ \sum \frac{1}{a^{2}}-\sum \frac{1}{{{{{a}’}}^{2}}}=0 $ .