Three Dimensional Geometry Question 248

Question: Two systems of rectangular axes have the same origin. If a plane cuts them at distance a, b, c and a’, b’, c’ from the origin, then

[AIEEE 2003]

Options:

A) $ \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a{{’}^{2}}}+\frac{1}{b{{’}^{2}}}+\frac{1}{c{{’}^{2}}}=0 $

B) $ \frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a{{’}^{2}}}+\frac{1}{b{{’}^{2}}}-\frac{1}{c{{’}^{2}}}=0 $

C) $ \frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a{{’}^{2}}}-\frac{1}{b{{’}^{2}}}-\frac{1}{c{{’}^{2}}}=0 $

D) $ \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a{{’}^{2}}}-\frac{1}{b{{’}^{2}}}-\frac{1}{c{{’}^{2}}}=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

Equation of planes be $ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 $ and $ \frac{x}{{{a}’}}+\frac{y}{{{b}’}}+\frac{z}{{{c}’}}=1 $ (Perpendicular distance on plane from origin is same)
\ $ | \frac{-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}} |=| \frac{-1}{\sqrt{\frac{1}{{{{{a}’}}^{2}}}+\frac{1}{{{{{b}’}}^{2}}}+\frac{1}{{{{{c}’}}^{2}}}}} | $
\ $ \sum \frac{1}{a^{2}}-\sum \frac{1}{{{{{a}’}}^{2}}}=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें