Three Dimensional Geometry Question 262

If a plane cuts off intercepts $ OA=a,OB=b, $ $ OC=c $ from the coordinate axes, then the area of the triangle $ ABC $ =

Options:

A) $ \frac{1}{2}\sqrt{b^{2}c^{2}+c^{2}a^{2}+a^{2}b^{2}} $

B) $ \frac{1}{2}(bc+ca+ab) $

C) $ \frac{1}{2}abc $

D) $ \frac{1}{2}\sqrt{{{(b-c)}^{2}}+{{(c-a)}^{2}}+{{(a-b)}^{2}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

Length of sides are $ \sqrt{a^{2}+b^{2}},,\sqrt{b^{2}+c^{2}},,\sqrt{c^{2}+a^{2}} $ respectively. Now use $ \Delta =\frac{1}{2}\sqrt{s,(s-a),(s-b),(s-c)} $ . Trick : Put $ a=2,b=2,c=2 $ , then sides will be $ 2\sqrt{2},2\sqrt{2} $ and $ 2\sqrt{2} $ i.e., equilateral triangle. So area of this triangle will be $ \Delta =\frac{\sqrt{3}}{4}\times {{(2\sqrt{2})}^{2}}=2\sqrt{3}sq.units $ Now option $ ,\Rightarrow \Delta =\frac{1}{2}\sqrt{16+16+16}= $ $ \frac{1}{2}\times 4\sqrt{3} $ $ =2\sqrt{3} $ . Hence the result.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें