Three Dimensional Geometry Question 271

Question: A variable plane at a constant distance p from origin meets the co-ordinates axes in $ A,B,C $ . Through these points planes are drawn parallel to co-ordinate planes. Then locus of the point of intersection is

Options:

A) $ \frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}} $

B) $ x^{2}+y^{2}+z^{2}=p^{2} $

C) $ x+y+z=p $

D) $ \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=p $

Show Answer

Answer:

Correct Answer: A

Solution:

Equation of plane is, $ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 $
$ {a,b,c $ respectively are intercepts on $ x,y,z $ axes}
Then $ \frac{abc}{\sqrt{a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}}}=p $
$ ,\Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}} $
Therefore locus of the point (x, y, z) is
$ \frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें