Three Dimensional Geometry Question 301

Question: If $ \overset{\to }{\mathop{r}},=(\hat{i}+2\hat{j}+3\hat{k})+\lambda (\hat{i}+\hat{j}+\hat{k}) $ and $ \overset{\to }{\mathop{r}},=(\hat{i}+2\hat{j}+3\hat{k})+\mu (\hat{i}+\hat{j}-\hat{k}) $ are two lines, then the equation of acute angle bisector of two lines is

Options:

A) $ \overset{\to }{\mathop{r}},=(\hat{i}+2\hat{j}+3\hat{k})+t(\hat{j}-\hat{k}) $

B) $ \overset{\to }{\mathop{r}},=(\hat{i}+2\hat{j}+3\hat{k})+t(2\hat{i}) $

C) $ \overset{\to }{\mathop{r}},=(\hat{i}+2\hat{j}+3\hat{k})+t(\hat{j}+\hat{k}) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Lines are $ \vec{r}=(\hat{i}++2\hat{j}+3\hat{k})+\lambda (\hat{i}-\hat{j}+\hat{k}) $ And $ \vec{r}=(\hat{i}+2\hat{j}+3\hat{k})+\mu (\hat{i}+\hat{j}-\hat{k}) $ Along vectors $ (\hat{i}-\hat{j}+\hat{k}) $ and $ (\hat{i}+\hat{j}-\hat{k}) $ Respectively. Angle between two lines $ ={{\cos }^{-1}}( \frac{(1)\times (1)+(-1)(1)+(1)(-1)}{\sqrt{3}\sqrt{3}} ) $ $ ={{\cos }^{-1}}( -\frac{1}{\sqrt{3}} ) $ Which is an obtuse angle.
$ \therefore $ Vector along acute angle bisector $ =\lambda [ \frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}-\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}} ]=\frac{2\lambda }{\sqrt{3}}(-\hat{j}+\hat{k}) $
$ \therefore $ Equation of acute angle bisector $ =(\hat{i}+2\hat{j}+3\hat{k})+t(\hat{j}-\hat{k}) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें