Three Dimensional Geometry Question 312

Question: A variable plane which remains at a constant distance 3p from the origin cut the coordinate axes at A, B and C. The locus of the centroid of triangle ABC is

Options:

A) $ {x^{-1}}+{y^{-1}}+{z^{-1}}={p^{-1}} $

B) $ {x^{-2}}+{y^{-2}}+{z^{-2}}={p^{-2}} $

C) $ x+y+z=p $

D) $ x^{2}+y^{2}+z^{2}=p^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let equation of the variable plane be $ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 $ This meets the coordinate axes at A (a, 0, 0), B (0, b, 0) and C (0, 0, c). Let $ P(\alpha ,\beta ,\gamma ) $ be the centroid of the $ \Delta ABC. $ Then $ \alpha =\frac{a+0+0}{3},\beta =\frac{0+b+0}{3},\gamma =\frac{0+0+c}{3} $
$ \therefore a=3\alpha ,b=3\beta ,c=3\gamma $ (2) Plane (1) is at constant distance 3p form the origin, so $ 3p=\frac{| \frac{0}{a}+\frac{0}{b}+\frac{0}{c}-1 |}{\sqrt{{{( \frac{1}{a} )}^{2}}+{{( \frac{1}{b} )}^{2}}+{{( \frac{1}{c} )}^{2}}}} $
$ \Rightarrow \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{9p^{2}} $ (3) Form (2) and (3), we get $ \frac{1}{9{{\alpha }^{2}}}+\frac{1}{9{{\beta }^{2}}}+\frac{1}{9{{\gamma }^{2}}}=\frac{1}{9p^{2}} $
$ \Rightarrow {{\alpha }^{-2}}+{{\beta }^{-2}}+{{\gamma }^{-2}}={p^{-2}} $ Generalizing $ \alpha ,\beta ,\gamma , $ locus of centroid P $ P(\alpha ,\beta ,\gamma ) $ is $ {x^{-2}}+{y^{-2}}+{z^{-2}}={p^{-2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें