Three Dimensional Geometry Question 323

Question: The direction cosines l, m, n of two lines are connected by the relations l + m + n = 0, lm = 0, then the angle between them is:

Options:

A) $ \pi /3 $

B) $ \pi /4 $

C) $ \pi /2 $

0

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Given d?c?s of two lines are $ \ell ,m,n $ connected by the relation $ \ell +m+n=0 $ and $ \ell m=0 $ Now, $ \ell +m+n=0\Rightarrow \ell =-m-n $
$ \Rightarrow \ell =-(m+n) $ And $ \ell m=0\Rightarrow -(m+n)m=0\Rightarrow -m^2 -mn=0 $ $ mn=-m^2; $ Therefore m and $ m+n=0 $ Then $ \frac{{\ell_1}}{-1}=\frac{m_1}{0}=\frac{n_1}{1} $ and if $ \ell +m+n=0 $ then $ \frac{{\ell_2}}{0}=\frac{m_2}{-1}=\frac{n_2}{1} $ $ ({\ell_1},m_1,n_1)=(-1,0,1) $ and $ ({\ell_2},m_2,n_2)=(0,-1,1) $ We know that angle between them $ \cos \theta =\frac{0+0+1}{\sqrt{1+0+1}\sqrt{0+1+1}}=\frac{1}{\sqrt{2}\sqrt{2}}=\frac{1}{2} $ $ \cos \theta =\frac{1}{2}=\cos 60{}^\circ \Rightarrow \theta =60{}^\circ \Rightarrow \theta =\frac{\pi }{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें