Three Dimensional Geometry Question 324

Question: The direction cosines of three lines passing through the origin are $ l_1,m_1,n_1;,l_2,m_2,n_2 $ and $ l_3,m_3,n_3 $ . The lines will be coplanar, if

Options:

A) $ | ,\begin{matrix} l_1 & n_1 & m_1 \\ l_2 & n_2 & m_2 \\ l_3 & n_3 & m_3 \\ \end{matrix}, |=0 $

B) $ | ,\begin{matrix} l_1 & m_2 & n_3 \\ l_2 & m_3 & n_1 \\ l_3 & m_1 & n_2 \\ \end{matrix}, |=0 $

C) $ l_1l_2l_3+m_1m_2m_3+n_1n_2n_3=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Here, three given lines are coplanar if they have common perpendicular Let d.c.’s of common perpendicular be $ l,,m,,n $
Þ $ ll_1+mm_1+nn_1=0 $ ?..(i) $ ll_2+mm_2+nn_2=0 $ ?..(ii) and $ ll_3+mm_3+nn_3=0 $ ?..(iii) Solving (ii) and (iii), we get $ \frac{l}{m_2n_3-n_2m_3}=\frac{m}{n_2l_3-n_3l_2}=\frac{n}{l_2m_3-l_3m_2}=k $
Þ $ l=k(m_2n_3-n_2m_3),,m=k(n_2l_3-n_3l_2),,n=k(l_2m_3-l_3m_2) $ Substituting in (i), we get $ l_1(m_2n_3-n_2m_3)+m_1(n_2l_3-n_3l_2)+,n_1(l_2m_3-l_3m_2)=0 $
$ \Rightarrow $ $ | ,\begin{matrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \\ \end{vmatrix} =0 $
$ \Rightarrow $ ? $ | ,\begin{matrix} l_1 & n_1 & m_1 \\ l_2 & n_2 & m_2 \\ l_3 & n_3 & m_3 \\ \end{vmatrix} =0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें