Three Dimensional Geometry Question 331

Question: What is the locus of a point which is equidistant from the points (1, 2, 3) and (3, 2, - 1)?

Options:

A) $ x+z=0 $

B) $ x-3z=0 $

C) $ x-z=0 $

D) $ x-2z=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Let $ (h,k,\ell ) $ be the point which is equidistant from the points (1, 2, 3) and (3, 2, -1)
$ \Rightarrow \sqrt{{{(h-1)}^{2}}+{{(k-2)}^{2}}+{{(\ell -3)}^{2}}} $
$ \Rightarrow \sqrt{{{(h-3)}^{2}}+{{(k-2)}^{2}}+{{(\ell +1)}^{2}}} $
$ \Rightarrow {{(h-1)}^{2}}+{{(\ell -3)}^{2}}={{(h-3)}^{2}}+{{(\ell +1)}^{2}} $
$ \Rightarrow h^{2}+1-2h+{{\ell }^{2}}-6\ell +9=h^{2}-6h+9+{{\ell }^{2}} $ $ +2\ell +1 $
$ \Rightarrow -2h-6\ell =-6h+2\ell \Rightarrow 6h-2h-6\ell -2\ell =0 $
$ \Rightarrow 4h-8\ell =0\Rightarrow h-2\ell =0 $ Putting h = x and $ \ell =z $ We get locus of points $ (h,k,\ell ) $ as, $ x-2z=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें