Three Dimensional Geometry Question 34

Question: A plane passes through a fixed point $ (p,q,r) $ and cut the axes in A,B,C. Then the locus of the centre of the sphere $ OABC $ is

Options:

A) $ \frac{p}{x}+\frac{q}{y}+\frac{r}{z}=2 $

B) $ \frac{p}{x}+\frac{q}{y}+\frac{r}{z}=1 $

C) $ \frac{p}{x}+\frac{q}{y}+\frac{r}{z}=3 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let the co-ordinates of A, B and C be (a,0,0), (0,b,0) and (0,0,c) respectively. The equation of the plane is $ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 $ Also, it passes through (p, q, r). So, $ \frac{p}{a}+\frac{q}{b}+\frac{z}{c}=1 $ Also equation of sphere passes through A, B, C will be $ x^{2}+y^{2}+z^{2}-ax-by-cz=0 $ If its centre $ (x_1,y_1,z_1) $ , then $ x_1=\frac{a}{2},y_1=\frac{b}{2},z_1=\frac{c}{2} $ \ $ a=2x_1,b=2y_1,c=2z_1 $ \ Locus of centre of sphere $ \frac{p}{x}+\frac{q}{y}+\frac{r}{z}=2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें