Three Dimensional Geometry Question 344

Question: Let A(4, 7, 8), B(2, 3, 4), C(2, 5, 7) be the vertices of a triangle ABC. The length of internal bisector of $ \angle A $ is

Options:

A) $ \frac{\sqrt{34}}{2} $

B) $ \frac{3}{2}\sqrt{34} $

C) $ \frac{2}{3}\sqrt{34} $

D) $ \frac{\sqrt{34}}{3} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ AB=6,BC=\sqrt{13,}CA=3 $
$ \therefore AB:AC=2:1 $ Internal bisector of an angle divides the opposite side in the ratio of adjacent sides
$ \therefore \frac{BD}{CD}=\frac{AB}{AC}=\frac{2}{1} $
$ \therefore $ Coordinate of D are $ ( 2,\frac{13}{3},6 ) $
$ \therefore $ Length $ AD=\frac{2}{3}\sqrt{34} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें