Three Dimensional Geometry Question 345

Question: A(3, 2, 0), B(5, 3, 2) and C(-9, 6, -3) are the vertices of a triangle ABC. If the bisector of $ \angle ABC $ meets BC at D, then coordinates of D are

Options:

A) $ ( \frac{19}{8},\frac{57}{16},\frac{17}{16} ) $

B) $ ( -\frac{19}{8},\frac{57}{16},\frac{17}{16} ) $

C) $ ( \frac{19}{8},\frac{57}{16},\frac{17}{16} ) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] D divides BC in the ratio AB : AC i.e. 3 : 13. Therefore, coordinates of D are $ ( \frac{3\times -9+13\times 5}{3+13},\frac{3\times 6+13\times 3}{3+13},\frac{3\times -3+13\times 2}{3+13} ) $ or $ ( \frac{19}{8},\frac{57}{16},\frac{17}{16} ) $