Three Dimensional Geometry Question 347

Question: The coordinates of point in xy-plane which is equidistant from three points A (2, 0, 3), B (0, 3, 2) and C (0, 0, 1) are

Options:

A) (3, 2, 0)

B) (3, 4, 0)

C) (0, 0, 3)

D) (2, 3, 0)

Show Answer

Answer:

Correct Answer: A

Solution:

[a] We know that z-coordinate of every point on xy-plane is zero. So, let P(x, y, 0) be a point in xy-plane such that $ PA=PB=PC. $ Now $ PA=PB\Rightarrow PA^{2}=PB^{2} $
$ \Rightarrow {{(x-2)}^{2}}+{{(y-0)}^{2}}+{{(0-3)}^{2}} $ $ ={{(x-0)}^{2}}+{{(y-3)}^{2}}+{{(0-2)}^{2}} $
$ \Rightarrow 4x-6y=0 $ or $ 2x-3y=0…(1) $ $ PB=PC\Rightarrow PB^{2}=PC^{2} $
$ \Rightarrow {{(x-0)}^{2}}+{{(y-3)}^{2}}+{{(0-2)}^{2}} $ $ ={{(x-0)}^{2}}+{{(y-0)}^{2}}+{{(0-1)}^{2}} $
$ \Rightarrow -6y+12=0\Rightarrow y=2…(2) $ Putting y = 2 in (1), we obtain x = 3. Hence, the required point is (3, 2, 0).



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें