Three Dimensional Geometry Question 349

Question: The points (4, 7, 8), (2, 3, 4), (-1, -2, 1) and (1, 2, 5) are the vertices of a

Options:

A) Parallelogram

B) Rhombus

C) Rectangle

D) Square

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let the points are A, B, C and D respectively Mid-point of AC is $ ( \frac{4-1}{2},\frac{7-2}{2},\frac{8+1}{2} ) $ or $ ( \frac{3}{2},\frac{5}{2},\frac{9}{2} ) $ . Mid point of BD is $ ( \frac{2+1}{2},\frac{3+2}{2},\frac{4+5}{2} ) $ or $ ( \frac{3}{2},\frac{5}{2},\frac{9}{2} ) $ . Thus AC and BD bisect each other. Further, $ AC=\sqrt{{{(4+1)}^{2}}+{{(7+2)}^{2}}+{{(8-1)}^{2}}} $ $ =\sqrt{25+81+49}=\sqrt{155} $ $ BD=\sqrt{{{(2-1)}^{2}}+{{(3-2)}^{2}}+{{(4-5)}^{2}}} $ $ =\sqrt{1+1+1}=\sqrt{3} $

$ \therefore AC\ne BD $ . Hence, ABCD represents a parallelogram.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें