Three Dimensional Geometry Question 350

Question: The equation of the line which passes through the point (1, 1, 1) and intersect the lines $ \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} $ and $ \frac{x+2}{1}=\frac{y-3}{2}=\frac{z+1}{4} $ is

Options:

A) $ \frac{x-1}{3}=\frac{y-1}{10}=\frac{z-1}{17} $

B) $ \frac{x-1}{3}=\frac{y-1}{3}=\frac{z-1}{-5} $

C) $ \frac{x-1}{-2}=\frac{y-1}{1}=\frac{z-1}{-4} $

D) $ \frac{x-1}{8}=\frac{y-1}{-2}=\frac{z-1}{3} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Any line passing through the point $ (1,1,1) $ is $ \frac{x-a}{a}=\frac{y-a}{b}=\frac{z-a}{c} $ (i) This line intersects the line $ \frac{x-1}{2}=\frac{y-2}{3} $ $ =\frac{z-3}{4} $ . If $ a:b:c\ne 2:3:4 $ and $ \begin{vmatrix} 1-1 & 2-1 & 3-1 \\ a & b & c \\ 2 & 3 & 4 \\ \end{vmatrix} =0 $

$ \Rightarrow a=2b+c=0 $ ???(ii) Again, line (i) intersects line $ \frac{x-(-2)}{1}=\frac{y-3}{2} $ $ =\frac{z-(-1)}{4} $ . If $ a:b:c\ne 2:3:4 $ and $ \begin{vmatrix} -2-1 & 3-1 & 3-1 \\ a & b & c \\ 1 & 2 & 4 \\ \end{vmatrix} =0 $

$ \Rightarrow 6a+5b-4c=0 $ ???.(iii) From (ii) and (iii) by cross multiplication, we have $ \frac{a}{8-5}=\frac{b}{6+4}=\frac{c}{5+12} $ or $ \frac{3}{a}=\frac{b}{10}=\frac{c}{17} $ So, the required line is $ \frac{x-1}{3}=\frac{y-1}{10}=\frac{z-1}{17}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें