Three Dimensional Geometry Question 353

Question: If centroid of the tetrahedron $ OABC $ , where $ A,B,C $ are given by (a, 2, 3),(1, b, 2) and (2, 1, c) respectively be (1, 2, -1), then distance of $ P(a,b,c) $ from origin is equal to

Options:

A) $ \sqrt{107} $

B) $ \sqrt{14} $

C) $ \sqrt{107/14} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Centroid $ \equiv $ $ ( \frac{\sum x}{4},,\frac{\sum y}{4},\frac{\sum z}{4}, ) $ = (1, 2, - 1)

$ \Rightarrow a=1,b=5,c=-9 $ ;
$ \therefore \sqrt{a^{2}+b^{2}+c^{2}}=\sqrt{107} $ .