Three Dimensional Geometry Question 354

Question: A plane meets the co-ordinate axes in $ A,B,C $ and $ (\alpha ,\beta ,\gamma ) $ is the centered of the triangle $ ABC $ . Then the equation of the plane is

[MP PET 2004]

Options:

A) $ \frac{x}{\alpha }+\frac{y}{\beta }+\frac{z}{\gamma }=3 $

B) $ \frac{x}{\alpha }+\frac{y}{\beta }+\frac{z}{\gamma }=1 $

C) $ \frac{3x}{\alpha }+\frac{3y}{\beta }+\frac{3z}{\gamma }=1 $

D) $ \alpha x+\beta y+\gamma z=1 $

Show Answer

Answer:

Correct Answer: A

Solution:

Let the co-ordinates of the points where the plane cuts the axes are (a, 0, 0), (0, b, 0), (0, 0, c). Since centroid is $ (\alpha ,\beta ,\gamma ), $ therefore $ a=3\alpha ,, $ $ b=3\beta ,c=3\gamma . $ Equation of the plane will be $ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 $
$ \Rightarrow \frac{x}{3\alpha }+\frac{y}{3\beta }+\frac{z}{3\gamma }=1\Rightarrow \frac{x}{\alpha }+\frac{y}{\beta }+\frac{z}{\gamma }=3. $