Three Dimensional Geometry Question 357

Question: If OABC is a tetrahedron where O is the origin and A, B, C are three other vertices with position vectors $ \overset{\to }{\mathop{a}},,\overset{\to }{\mathop{b}}, $ and $ \overset{\to }{\mathop{c}}, $ respectively, then the centre of sphere circumscribing the tetrahedron is given by the position vector

Options:

A) $ \frac{a^{2}(\vec{b}\times \vec{c})+b^{2}(\vec{c}\times \vec{a})+c^{2}(\vec{a}\times \vec{b})}{2[\vec{a},\vec{b},\vec{c}]} $

B) $ \frac{b^{2}(\vec{b}\times \vec{c})+a^{2}(\vec{c}\times \vec{a})+c^{2}(\vec{a}\times \vec{b})}{[\vec{a},\vec{b},\vec{c}]} $

C) $ \frac{b^{2}(\vec{b}\times \vec{c})+a^{2}(\vec{c}\times \vec{a})+c^{2}(\vec{a}\times \vec{b})}{2[\vec{a},\vec{b},\vec{c}]} $

D) $ \frac{a^{2}(\vec{a}\times \vec{b})+b^{2}(\vec{b}\times \hat{c})+c^{2}(\vec{c}\times \vec{a})}{2[\vec{a},\vec{b},\vec{c}]} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] If the centre $ ‘P’ $ is with position vector $ \vec{r}, $ Then $ \vec{a}-\vec{r}=\overrightarrow{PA},\vec{b}-\vec{r}=\overrightarrow{PB},\vec{c}-\vec{r}=\overrightarrow{PC,} $ Where $ | \overrightarrow{PA} |=| \overrightarrow{PB} | $ $ =| \overrightarrow{PC} |=| \overrightarrow{OP} |=| {\vec{r}} | $ Consider $ | \vec{a}-\vec{r} |=| {\vec{r}} | $

$ \Rightarrow (\vec{a}-\vec{r}).(\vec{a}-\vec{r})=\vec{r}.\vec{r} $

$ \Rightarrow a^{2}=-2\vec{a}.\vec{r}+r^{2}=r^{2} $

$ \Rightarrow a^{2}=2\vec{a}.\vec{r} $ Similarly, $ b^{2}=2\vec{b}.\vec{r} $ and $ c^{2} $ $ =2\vec{c}.\vec{r} $ Since, $ (\vec{b}\times \vec{c}),(\vec{c}\times \vec{a}) $ and $ (\vec{a}\times \vec{b}) $ are non-coplanar, then $ \vec{r}=x(\vec{b}\times \vec{c})+y(\vec{c}\times \vec{a})+z(\vec{a}\times \vec{b}) $ $ \vec{a}.,\vec{r}=x,\vec{a}.(\vec{b}\times c)+y.0+z.0=x[\vec{a},\vec{b},\vec{c}] $

$ \Rightarrow x=\frac{\vec{a}.\vec{r}}{[\vec{a},\vec{b},\vec{c}]}=\frac{a^{2}}{2[\vec{a},\vec{b},\vec{c}]} $ Similarly, $ y=\frac{b^{2}}{2[\vec{a},\vec{b},\vec{c}]} $ and $ z=\frac{c^{2}}{2[\vec{a},\vec{b},\vec{c}]} $ Therefore, $ \vec{r} $ $ =\frac{a^{2}(\vec{b}\times \vec{c})+b^{2}(\vec{c}\times \vec{a})+c^{2}(\vec{a}\times \vec{b})}{2[\vec{a},\vec{b},\vec{c}]} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें