Three Dimensional Geometry Question 359

Question: The distance of point A (-2, 3, 1) from the line PQ through P (- 3, 5, 2), which makes equal angles with the axes is

Options:

A) $ 2/\sqrt{3} $

B) $ \sqrt{14/3} $

C) $ 16/\sqrt{3} $

D) $ 5/\sqrt{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Here, $ \theta =\beta =\gamma $
$ \therefore {{\cos }^{2}}\alpha +cso^{2}\beta +{{\cos }^{2}}\gamma =1 $
$ \therefore \cos \alpha =\frac{1}{\sqrt{3}} $ Direction cosines of PQ are $ ( \frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}} ) $ $ PM= $ Projection of AP on PQ $ =| (-2+3)\frac{1}{\sqrt{3}}+(3-5)\frac{1}{\sqrt{3}}+(1-2)\frac{1}{\sqrt{3}} |=\frac{2}{\sqrt{3}} $ And $ AP=\sqrt{{{(-2+3)}^{2}}+{{(3-5)}^{2}}+{{(1-2)}^{2}}}=\sqrt{6} $ $ AM=\sqrt{{{(AP)}^{2}}-{{(PM)}^{2}}}=\sqrt{6-\frac{4}{3}}=\sqrt{\frac{14}{3}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें