Three Dimensional Geometry Question 360

Question: The shortest distance between the skew lines $ l_1:\vec{r}={{\vec{a}}_1}+\lambda {{\vec{b}}_1}l_2:\vec{r}={{\vec{a}}_2}+\mu {{\vec{b}}_2} $ is

Options:

A) $ \frac{|({{{\vec{a}}}_2}-{{{\vec{a}}}_1}).{{{\vec{b}}}_1}\times {{{\vec{b}}}_2}|}{|{{{\vec{b}}}_1}\times {{{\vec{b}}}_2}|} $

B) $ \frac{| ({{{\vec{a}}}_2}-{{{\vec{a}}}_1}).{{{\vec{a}}}_2}\times {{{\vec{b}}}_2} |}{| {{{\vec{b}}}_1}\times {{{\vec{b}}}_2} |} $

C) $ \frac{| ({{{\vec{a}}}_2}-{{{\vec{b}}}_2}).{{{\vec{a}}}_1}\times {{{\vec{b}}}_1} |}{| {{{\vec{b}}}_1}\times {{{\vec{b}}}_2} |} $

D) $ \frac{| ({{{\vec{a}}}_1}-{{{\vec{b}}}_2}).{{{\vec{b}}}_1}\times {{{\vec{a}}}_2} |}{| {{{\vec{b}}}_1}\times {{{\vec{a}}}_2} |} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let PQ be the shortest distance vector between $ l_1 $ and $ l_2 $ . Now, $ l_1 $ passes through $ A_1({{\vec{a}}_1}) $ and is parallel to $ {{\vec{b}}_1} $ and $ l_2 $ passes through $ A_2({{\vec{a}}_2}) $ and is parallel to $ {{\vec{b}}_2} $ . Since, PQ is perpendicular to both $ l_1 $ and $ l_2 $ is is parallel to $ {{\vec{b}}_1}\times {{\vec{b}}_2}. $ Let $ \hat{n} $ be the unit vector along PQ. Then, $ \hat{n}=\frac{{{{\vec{b}}}_1}\times {{{\vec{b}}}_2}}{| {{{\vec{b}}}_1}\times {{{\vec{b}}}_2} |} $ Let d be the shortest distance between the given lines $ l_1 $ and $ l_2 $ . $ | \overrightarrow{PQ} |=d $ and $ \overrightarrow{PQ}=d,\hat{n}. $ Next PQ being the line of shortest distance between $ l_1 $ and $ l_2 $ is the projection of the line joining the points $ A_1({{\vec{a}}_1}) $ and $ A_2({{\vec{a}}_2}) $ on $ \hat{n} $ . $ | \overrightarrow{PQ} |=| {{{\vec{A}}}_1}{{{\vec{A}}}_2}.\hat{n} |\Rightarrow d=| \frac{({{{\vec{a}}}_2}-{{{\vec{a}}}_1}).{{{\vec{b}}}_1}\times {{{\vec{b}}}_2}}{| {{{\vec{b}}}_1}\times {{{\vec{b}}}_2} |} | $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें