Three Dimensional Geometry Question 368

Question: Let $ A(\vec{a}) $ and $ B(\vec{b}) $ be points on two skew line $ \vec{r}=\vec{a}+\vec{\lambda } $ and $ \vec{r}=\vec{b}+u\vec{q} $ and the shortest distance between the skew line is 1, where $ \vec{p} $ and $ \vec{q} $ are unit vectors forming adjacent sides of a parallelogram enclosing an area of $ \frac{1}{2} $ units. If an angle between AB and the line of shortest distance is $ 60{}^\circ $ , then $ AB= $

Options:

A) $ \frac{1}{2} $

B) $ 2 $

C) $ 1 $

D) $ \lambda \in R-{0} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ 1=| (\vec{b}-\vec{a}).\frac{(\vec{p}\times \vec{q})}{| \vec{p}\times \vec{q} |} |\Rightarrow | \vec{a}-\vec{b} |\cos 60{}^\circ =1 $ $ AB=2 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें